Search-Based Program
Analysis

Andreas Zeller » Saarland University,

S earc h m B ase d Saarbriicken, Germany, zeller@cs.uni-

saarland.de, http://www.st.cs.uni-

Program Analysis saarland delzeller/

Andreas Zeller
Saarland University

Abstract. Traditionally, program analysis
. has been divided into two camps: Static
Prog ram Ana IyS IS techniques analyze code and safely
determine what can- not happen; while
dynamic techniques analyze executions
to determine what actually has
happened. While static analysis suffers
from overap- proximation, erring on
e Verification and validation whatever could happen, dynamic
g ; analysis suffers from
* Understanding and debugging underapproximation, ignoring what else
could happen. In this talk, | suggest to
systematically generate executions to
enhance dynamic anal- ysis, exploring
and searching the space of software
behavior. First results in fault localization
and specification mining demonstrate
the benefits of search-based analvsis.

e Optimization and transformation

Keywords: program analysis, test case
generation, specifications

Static Analysis

Originates from compiler optimization
Considers all possible executions
Can prove universal properties

Tied to symbolic verification techniques

Here’s a little fun function. What does it
do?

FuninC

double fun(double x) {
doublen=x/2;
const double TOLERANCE = 1.0e-7;
do{
D= lnekon)2
} while (ABS(n * n - x) > TOLERANCE);
return n;

Here’s a few examples. Can you guess
now?

Fun Demo

(50051 $ i

Here it is again, named. It is actually
called the Byzantine method for

Sq uare ROOtS in C computing square roots.

double csqrt(double x, double eps) {
doublen=x/2;
do {
n=(n+x/n)/2;
} while (ABS(n * n — x) > eps);
return n;

hoeo do e validate ZAns?

Square Roots in Eiffel

sgrt (x: REAL, eps: REAL): REAL is
—— Square root of x with precision eps

require
Xx>=0Aeps>0
external
csqrt (x: REAL, eps: REAL): REAL
do
Result := csqrt (x, eps)
ensure - postcondition

== prec ondition

abs (Result A 2 - x) <= eps
end —— sgrt

Static C Analysis

C
Program

Real Square Roots

double asgrt(double x, double eps) {
_asm{

fld x
fsqrt
}

Here’s an Eiffel implementation, coming
with pre- and postconditions we can
actually use for validation.

This is hard — but we can still map all
languages to one and, for instance,
analyze C programs.

Static Binary Analysis

Roots in the Cloud

double rsgrt(double x, double eps) {
char url[1024];
char *query =
“http://www.compute.org/?sqrt(%f,%f)”
sprintf(url, query, x, eps);
return atof(query_url(url));

}

hoeo do e validate ¢Ans?

Eiffel @
Program Program

Static Analysis

Eiffel C
—> Server
Program Program

Multiple Languages

Eiffel C
Program Program

Obscure Code

double csqrt(double x, double eps) {
_asm{
fid x
fsqrt
) Remote Calls

}

Eiffel C

—> Server
Program Program

This is where static analysis finally
comes to an end.

But does this actually happen in real
life? | mean, who has multiple
languages, obscure code, remote calls?

Well, everyone has. You start a
browser, you have it all. None of this is
what program analysis can handle these
days. We’'re talking scripts, we’re talking
distributed, we’re talking amateurs,
we’re talking security.

|g¢ . © Myla Fox Productions

“ © Myla Fox Productions

When you’re doing static analysis these
days, you’re in some kind of dreamland.
Everything is beautiful, everything is
well-defined, and everything is under
your control. (This is also called the
academic bubble).

Picture © Myla Fox Productions
http://mylafox.deviantart.com/art/My-
Little-Pony-Rainbow-Dash-199094976

In real life, though, you’re stuck — and
we do not have an answer to these new
challenges.

Picture © Myla Fox Productions
http://mylafox.deviantart.com/art/My-

Little-Pony-Rainbow-Dash-199094976

In Greek mythology Sisyphus (/
'sisafas/; Greek: Zioupog Sisyphos)

was a king punished by being compelled
to roll an immense boulder up a hill, only
to watch it roll back down, and to repeat
this throughout eternity.

Titian(Tiziano Vecelli)

Sisyphos.During her stay in Augsburg
1547-1548, Queen Maria of
Hungary,sister of Karl V., asked Titian to
paint a series of "Condemned" or
"Furies". Canvas,237 x 216 cm Cat.426

Dynamic Analysis

Originates from execution monitoring
Considers (only) actual executions
Covers all abstraction layers

Tied to run-time verification techniques

... and execution is normally the least
we can do.

Only net@sbnalaition

_Jtmp — bash — 52x14 — 383

(50051 $

. Indeed, none of the limitations of static
Multiple Languages analysis is an issue for dynamic
analysis.

Eiffel C
—_—
Program Program

Obscure Code

double csqrt(double x, double eps) {
_asm{
fld x

i Remote Calls

}

Eiffel C
—> Server
Program Program

We can dynamically infer
postconditions, for instance — and check

GhMing Properties them at runtime.

double asgrt(double x, double eps) {
_asm{
fld x
fsqrt
}

assert abs(x * x - eps) < 0.0001;

So, is there some sort of middle
Static Analysis ground — something that combines
re?a/‘res pertfect ,énoa.)/ea/ge * the coverage _of static anajysis wit/?
* the applicability of dynamic analysis?
o Originates from compiler optimization
o Considers all possible executions
o Can prove universal properties

o Tied to symbolic verification techniques

Dynamic Analysis
lirnted o observed runs

o Originates from execution monitoring
o Considers (only) actual executions
o Covers all abstraction layers

o Tied to run-time verification techniques

The answer is — you guessed it — what |
call “experimental analysis” or, suitable
to this conference, “search-based
analysis”.

Search-Based
Program Analysis

Dynamic Analysis
linnted o observed runs
Originates from execution monitoring

Considers (only) actual executions

Covers all abstraction layers

Tied to run-time verification techniques

need miore runs

Test Case Generation

generates as many executions as needed
random / search-based / constraint-based
typically directed towards specific goals

achieves high coverage on real programs

executions

Generate test cases Assess executions
to systematically to learn about
explore behavior software behavior

Search-based
Program Analysis

generate executions as needed
analyze resulting executions and results
analysis results drive test case generation

explore as much behavior as possible

executions

Generate test cases Assess executions
to systematically to learn about
explore behavior software behavior

specifications

Challenges

We need to
1. Explore complete behavior
2. Restrict to real usage

3. Identify relevant behavior

Enriching specifications

initial spec enriched spec

void ProtocolTest() {
Protocol p = new ...
p-conn();
p.send(x);
p-quit();

Execute and extract Generate test mutants
initial spec and enrich specs

Dallmeier et al: “Generating Test Cases for Specification Mining’, ISSTA 2010

SMTPProtocol
| void ProtocolTest() {

|
Protocol p = new ... ‘
p-conn(); o start
. <init>() send(x)

p-quit();

b void TestMutant | () {
UITCOVETEUN
n)cora’l; y
‘g.'send(;);” ;ll <)

p-cafpilsr ()

i qQuitd)s
| }%‘Lebﬂﬁ@)

Dallmeier et al: “Generating Test Cases for Specification Mining’, ISSTA 2010

anitiahed

getHostName @
openPort

getService]
authSend <init>

data
getService

quit
dropConn dropConn

getState

dropCo
getState_ auth Gt S
authReceive . er%o

A—— s

authSend getState

etHostName
A “ ' etaﬁ : m

Dallmeier et al: “Generating Test Cases for Specification Mining’, ISSTA 2010

executions

Assess executions
to learn about
software behavior

Generate test cases
to systematically
explore behavior

specifications

Do enriched specs contain
more information?

initial B enriched

SMTPProtocol Signature ZipOutputStream

Enriched specs have more regular —
and exceptional transitions |

; =m0 e BB R ll[

St I.es 17, 13 ,)S/.t/ @,\rce

‘YIB[‘ I qQ, x Sta, ly) S,
(33 Ny Cep. lag Nsjy; g, ;
f/o,)S :Otlo e (77 Ong ﬁt/o,’s

o
Ons 170'7 s

“Enriched specs have more regular and
exceptional transitions”;

“Enriched specs can be almost as
effective as manually crafted specs”

Init vs enrich
consistent for 3
other subjects
Enrich more
trans. ALSO
BETTER FOR
VERIF?

Evaluation

Class Client Initial Model Enriched Model

= Tautoko
= Spec
Q E Miner
& @

Second Client Mutated Client
e L ® |
£ £ JFTA
&= &5 Static Typestate Verifier

® L e
£ Error £
<> Reports <> -]
(N 6 (=)

How effective are
enriched specifications?

reported at correct location Il total reported

SMTPProtocol Signature ZipOutputStream

Enriched specs can be almost as

effective as manually crafted specs |

Nir:. €n,. Nig:. €n,.
L n"%ed%”ue/ e nrlcbedme"ue/

b void ProtocolTest() {

Protocol p = new ...
p-conn();

p-send(x);

p-quit();

Execute and extract Generate test mutants
initial spec and enrich specs

Dallmeier et al: “Generating Test Cases for Specification Mining’, ISSTA 2010
Schur: “Experimental Specification Mining for Enterprise Applications’, ESEC/FSE DS 2011

two types: report
at correct call, at
least report a
violation

for comp,
manually created
model

Challenges

We need to
1. Explore complete behavior
2. Restrict to real usage

3. Identify relevant behavior

For analysis, we not only want to be as
complete as possible, but we’d also like

C h a I I en g es to get rid of all the nonsensical behavior
- that is, keep real executions only.

We need to
1. Explore complete behavior
2. Restrict to real usage

3. Identify relevant behavior

Here’s a simple addressbook.

8 .00 Address Book

New contact |

First name Last name E-mail Phone Mobile ‘ All
James S. Roebuck JamesSRoe... 561-888-... 561-888-... 8 3
Naomi D. Long NaomiDLo... 390-12-5... 390-12-1... T
Karen L. Lloyd KarenLLlo... 228-76~1... 228-76~... -
JeanR. Voigt JeanRVoigt... 610-344-... 610-344-...| |
Douglas L. Green DouglaslG... 612-615-... 612-615-... || ¥ [&ll Suppliers

| Europe

7 U.S.

New category

| Employees

E-Mail KarenLLloyd@ex | Apply

First name | Karen L.

Last name Lloyd Second e-mail Karen@CreditCa
Phone 228-76-1230 URL | http://www.crec

Mobile 228-76-8710

Notes |1673 Jehovah Drive
Fredericksburg, VA 22408|

Here’s a test case generated by
Randoop. It's >200 lines long...

Random Testing

public class RandoopTest0 extends TestCase {

public void test8() throws Throwable {
if (debug) System.out.printf("%nRandoopTest0.test8");

AddressBook var0 = new AddressBook();
EventHandler var1 = var0.getEventHandler();
Category var2 = var0.getRootCategory();
Contact var3 = new Contact();

AddressBook var4 = new AddressBook();
EventHandler var5 = var4.getEventHandler();
Category var6 = var4.getRootCategory();

String var7 = var6.getName();
varO.addCategory(var3, var6);
SelectionHandler var9 = new SelectionHandler();
AddressBook var10 = new AddressBook();
EventHandler var11 = var10.getEventHandler();

AddressBook var65 = new AddressBook(); ... and in the end, it fails. What do you
EventHandler var66 = var65.getEventHandler(); do now?
Category var67 = var65.getRootCategory();

Contact var68 = new Contact();

Categoryl[] var69 = var68.getCategories();

var65.removeContact(var68);

java.util.List var71 = varé65.getContacts();

AddressBook var72 = new AddressBook();

EventHandler var73 = var72.getEventHandler();

Category var74 = var72.getRootCategory();

EventHandler var75 = var72.getEventHandler();

SelectionHandler var76 = new SelectionHandler();

actions.CreateContactAction var77 = new actions.CreateContactAction(var72, var76);
boolean var78 = var77.isEnabled();

AddressBook var79 = new AddressBook();

EventHandler var80 = var79.getEventHandler();

Category var81 = var79.getRootCategory();

String var82 = var81.getName();

var77.categorySelected(var81);

Category var85 = var65.createCategory(var81, "hi!");

String var86 = var85.toString();

Category var88 = var0.createCategory(var85, "exceptions.NameAlreadylnUseException");

A simplified version of the above. If you
use two address book objects and make

Si m pl iﬁ ed TeSt Ca se one’s category depend on one the other,

it'll crash.

public class RandoopTest0 extends TestCase {
public void test8() throws Throwable {
if (debug) System.out.printf("%nRandoopTest0.test8");

AddressBook al = new AddressBook();

AddressBook a2 = new AddressBook();

Category alc = al.createCategory(al.getRootCategory(), "alc");
Category a2c = a2.createCategory(alc, "a2c");

Catch: There’s only one addressbook!
800 Address Book So the Randoop test makes little sense,
(Shiewcontsces) New category J because it violates an implicit

Firstname Last name E-mail Phone Mobile E All -

JamesS. Roebuck JamesSRoe...561-888-... 561-888-... L precondltlon

Naomi D. Long NaomiDLo... 390-12-5... 390-12-1... b Customers

Karen L. Lloyd KarenLLlo... 228-76~1... 228-76~...

JeanR. Voigt JeanRVoigt... 610-344-... 610-344-... | |

Douglas L. Green DouglaslG... 612-615-... 612-615-... |*| ¥ [&ll Suppliers
" Europe

7 U.S.

| Employees

First name Karen L. E-Mail KarenLLloyd@ex
Last name Lloyd Second e-mail Karen@CreditCa
Phone 228-76-1230 URL http://www.crec

Mobile 228-76-8710

Notes |1673 Jehovah Drive
[Fredericksburg, VA 22408|

howo rrcmy addressboofs?

Search-based
System Testing

Generate tests at the user interface level
Aim for code coverage and GUI coverage
Synthesize artificial input events

Any test generated is a valid input

Joint work with Florian Gross and Gordon Fraser

So we generate one input after
8.0.0 Address Book another .

New contact | | New category |
First name Last name E-mail Phone Mobile i All I
James S. Roebuck JamesSRoe... 561-888-... 561-888-... Bl Contractors
Naomi D. Long NaomiDLo... 390-12-5... 390-12-1... T %
Karen L. Lloyd KarenLLlo... 228-76~1... 228-76~... -
JeanR. Voigt JeanRVoigt... 610-344-... 610-344-...| |
Douglas L. Green DouglaslG... 612-615-... 612-615-... || ¥ [&ll Suppliers
| Europe
7 U.S.

| Employees

First name | Karen L. E-Mail KarenLLloyd@ex
Last name Lloyd Second e-mail Karen@CreditCa
Phone 228-76-1230 URL | http://www.crec

Mobile 228-76-8710

Notes |1673 Jehovah Drive
Fredericksburg, VA 22408|

0.00 Address Book

800 Calculator

New contact [New category | | 1,245 C
Firstname Lastname E-mail Phone Mobile | AN
James S. Roebuck JamesSRoe... 561-888-... 561-888-.. Contractors 7 | 8 | +
NaomiD. Long NaomiDLo... 390-12-5... 390-12-1 %
Karen L. Lloyd KarenLLlo... 228-76~1... 228-76~... ‘ — | [4]| 3 | 6 |
JeanR. Voigt JeanRVoigt... 610-34 " J°4 =" mnloveas _
Douglas L. Green DouglasLG... 612-6 JerpWord - quotes2 html

1 New

Print...

First name Karen L. 1 [Save
Save As.

Last name | Lloyd Second e-

e N0

7 Open Document... ~O

Recently Opened

Document AN || & ([O] [w[7] [#]<¢ +
Ap
quotes2.html

quotes html
*S = 000

_Roman L. B 7 U

Quotes

s[a]a] [E=]iE

TerpSpreadsheet Graph

3 Copy
Save RTF... r

TerpPresent

Datei Bearbeiten Ansicht Format TPBook Zelle

Fenster Hilfe

NEIEIEE % ole|w|=la]a

n|b|i||E|E[Z=|[-193

[-]
NojojA| "\~ @B 5 BT .“vm:}

% Neuer Graph*

[4
8 siide 1)

ram = 4491 @ Jeffrey B.
Lester = 55,33 ® James

|

Today's Keynote:

Search-Based Program Analysis

...for a little test suite of applications, we
find real bugs:

* Addressbook crashes when editing
empty list

Calculator crashes when computing
500*10+5 with ,” as separator
Spreadsheet crashes when pasting
empty clipboard

Initial Results

Found real bugs in examined applications
Every bug found is triggered by real input
Higher coverage than GUItar / Randoop

No nonsensical tests

Joint work with Florian Gross and Gordon Fraser

In one example, our code coverage is
lower — but that’s because Randoop
covers dead code unreachable from the
GUL.

Challenges

We need to

1. Explore complete behavior

2. Restrict to real usage

3. Identify relevant behavior

Note, though, that the tests we have
generated do not contain assertions —

C h a I I en g es they are still only executions, but not

actual tests. How do we find out what
these executions should do? What is
their relevant effect?

We need to
1. Explore complete behavior
2. Restrict to real usage

3. Identify relevant behavior

To address these issues, let me take
you a bit into our recent work in test
case generation.

What is relevant?

Features that clients rely upon
can be determined from usage

Features that characterize correct behavior
in other words: specifications that detect bugs

Welcome to the
void concrete_test() wonderful world of test

{ .
YearMonthDay var0 = new YearMonthDay(); case generatlon .

TimeOfDay var1 = new TimeOfDay(var0); Tremendous progress

CopticChronology var2 = (CopticChronology) : .
org.joda.time.Chronology.getCopticUTC(); in the last years:

FixedDateTimeZone var3 = SymbOIiC, search-
(FixedDateTimeZone) var2.getZone(); based. concolic But

DateTime var4 = varO.toDateTime(var1);

DateTime var5 = var4d.withZone(var3); the first thlng you
notice: No assertions.

uTest

class Foo { class Foo { void test() {
int bar(int x) { int bar(int x) { f = new Foo();
return 2 * x; return 2 + X; y = f.bar(10);

)) asserim=20)

} }

e generates test cases with oracles
e retains assertions that find most mutants

Fraser, Zeller: “Mutation-driven Generation of Unit Tests and Oracles’, ISSTA 2010

void concrete_test()
{
YearMonthDay var0O = new YearMonthDay();
TimeOfDay var1 = new TimeOfDay(var0);
CopticChronology var2 = (CopticChronology)
org.joda.time.Chronology.getCopticUTC();
FixedDateTimeZone var3 =
(FixedDateTimeZone) var2.getZone();
DateTime var4 = varO.toDateTime(var1);
DateTime var5 = var4.withZone(var3);

Fraser, Zeller: “Mutation-driven Generation of Unit Tests and Oracles’, ISSTA 2010

void concrete_test()
{
YearMonthDay varO = new YearMonthDay();
TimeOfDay var1 = new TimeOfDay(var0);
CopticChronology var2 = (CopticChronology)
org.joda.time.Chronology.getCopticUTC();
FixedDateTimeZone var3 =
(FixedDateTimeZone) var2.getZone();
DateTime var4 = varO.toDateTime(var1);
DateTime var5 = var4.withZone(var3);

assertFalse (var4.equals(var5));
assertNotNull (var5); ~= Catch the most mutants

Fraser, Zeller: “Mutation-driven Generation of Unit Tests and Oracles’, ISSTA 2010

Instead of this...

we thus get this (with
oracles). Much better,
because it tells you
what is expected - but
still unreadable.

Next thing we need to do: We need to
make these more readable. And for
this, we mine existing usage examples.

.Qti()

socket: null
state: NOT_CON

Fraser, Zeller: “Mutation-driven Generation of Unit Tests and Oracles’, ISSTA 2010

void concrete_test()
{
YearMonthDay var0 = new YearMonthDay();
TimeOfDay var1 = new TimeOfDay(var0);
CopticChronology var2 = (CopticChronology)
org.joda.time.Chronology.getCopticUTC();
FixedDateTimeZone var3 =
(FixedDateTimeZone) var2.getZone();
DateTime var4 = var0.toDateTime(var1);
DateTime var5 = var4.withZone(var3);

assertFalse (var4.equals(var5));
assertNotNull (var5);

Fraser, Zeller: “Mutation-driven Generation of Unit Tests and Oracles’, ISSTA 2010

By mining usage
void concrete_test() information, the test
{ case already makes

YearMonthDay var0 = new YearMonthDay();
TimeOfDay var1 = new TimeOfDay(var0); more sense. But we

DateTimeZone var3 = DateTimeZone.UTC;
DateTime var4 = var0O.toDateTime(var1);
DateTime var5 = var4.withZone(var3);

can even do better.

assertFalse (var4.equals(var5));
assertNotNull (var5);

Fraser, Zeller: “Mutation-driven Generation of Unit Tests and Oracles’, ISSTA 2010

void concrete_test()

{

- Input
YearMonthDay var0 = new YearMonthDay();
TimeOfDay var1 = new TimeOfDay(var0);
DateTimeZone var3 = DateTimeZone.UTC;

- Melhods wunder Zest
DateTime var4 = varO.toDateTime(var1);
DateTime var5 = var4.withZone(var3);

assertFalse (var4.equals(var5));
assertNotNull (var5);

Fraser, Zeller: “Generating Parameterized Unit Tests’, ISSTA 2011

void parameterized_test(TimeOfDay inputT,

{

DateTimeZone input2, YearMonthDay input3)

— Turn input into parameters
assume (input3.equals(new YearMonthDay()));
assume (input1.equals(new TimeOfDay(input3));
assume (input2.equals(DateTimeZone.UTQ));

DateTime var4 = varO.toDateTime(input1);
DateTime var5 = var4.withZone(input2);

assertFalse (var4.equals(var5));
assertNotNull (var5);

Fraser, Zeller: “Generating Parameterized Unit Tests", ISSTA 2011

assume (input2.equals(DateTimeZone.UTC));

Fraser, Zeller: “Generating Parameterized Unit Tests", ISSTA 2011

We can split this test
into a part that sets up
the input, and the
actual methods we
want to test.

We then turn the test
into a parametrized
test — a unit test that
can be executed with
arbitrary values. For a

start, though, we
assume that every
parameter has still a
concrete value

Let us focus on one of
these preconditions.
This is a property of
input2. But again, we
have the choice
between several such
properties.

assume (input2 != null);

assume (input2.isFixed());

assume (input2. getlD().equals(“UTC"));
assume (input2.hashCode() == 0xb0bO0feed);
assume (input2.equals(DateTimeZone.UTQ));

DateTime var4 = var0O.toDateTime(input1);
DateTime var5 = var4.withZone(input2);

assertFalse (var4.equals(var5));
assertNotNull (var5);

Fraser, Zeller: “Generating Parameterized Unit Tests’, ISSTA 2011

void parameterized_test(TimeOfDay inputT,

{

DateTimeZone input2, YearMonthDay input3)

assume (input2 != null);
assume (input2.isFixed());
assume (input3 != null);
assume (input3.size() == 3);

DateTime var4 = varO.toDateTime(input1);
DateTime var5 = var4.withZone(input2);

assertFalse (var4.equals(var5));
assertNotNull (var5);

o 777/‘5 e SPec/f/‘Cdzf/oh./

Fraser, Zeller: “Generating Parameterized Unit Tests", ISSTA 2011

Challenges

We need to
1. Explore complete behavior v/
2. Restrict to real usage v

3. Identify relevant behavior

But which
preconditions shall we
retain? We retain
those preconditions
where a change
affects the
postcondition. We
systematically negate
the preconditions,

generate test cases,

Consequently, we get
a full set of
preconditions,
postconditions,
execution — all search-
based, all generated.
This is what we’d like
to show to the
programmer, who’d

__check whether thisis

We have the building blocks in place for
doing better analysis!

Static Analysis
rega/reS pertect ,énoa)/edje

o Originates from compiler optimization
o Considers all possible executions
o Can prove universal properties

o Tied to symbolic verification techniques

Dynamic Analysis
/irnted 2o observed runs

o Originates from execution monitoring
o Considers (only) actual executions
o Covers all abstraction layers

o Tied to run-time verification techniques

executions

Generate test cases Assess executions
to systematically to learn about
explore behavior software behavior

specifications

executions Enriching specifications

Generate test cases Assess executions
to systematically to learn about
explore behavior software behavior

Execute and extract Generate test mutants
specifications initial spec and enrich specs

Dalimeter ¢ at “Gereratiog Test Cases for Soachhcation Mining’ SSTA 2010

Search-based analysis Explore complete behavior

* generates test cases with oracles
Today's Keynote: = retains assertions that find most mutants

Search-Based Program Analysis
Feases Zoho. Askation &hven Ganenstion of Uk Tess and Oracles, S55TA 2010

Restrict to real usage Identify relevant behavior

* The more we can cover behavior, the
more we learn about the system

* In presence of obscure code, search-
based techniques are first choice

The more we can cover behavior, the
more we learn about the system — and
this gives us great opportunities to
finally deal with obscure, complex
systems.

All of this flows together. It’s
searching for behavior. It’s a Yin and
Yang thing.

executions Enriching specifications

Generate test cases Assess executions
to systematically to learn about
explore behavior software behavior

Execute and extract Generate test mutants.
specifications initial spec and enrich specs

Dalimeler et at:“Generating Test Cases for Specification Mining’ ISSTA 2010

Search-based analysis Explore complete behavior

MuTest

void test() {
=

® generates test cases with oracles
Today's Keynote:

Se hiBased A
gra,

 retains assertions that find most mutants

Frase, Zolle:"Mutation-driven Generation of Unit Tests and Orades’, ISSTA 2010

Restrict to real usage Identify relevant behavior

Applications

e Exhaustively test and explore real systems
e Obtain specifications for functional testing

e Ease understanding and debugging

You may be aware of statistical fault
localization. Little may you know that all
these techniques only work if you have
tens of thousands of tests. Ben Liblit
(who invented this) was very clear about
this (and did his best to collect some);
later folks weren’t.

Debugging

g

need riore runs

Directed Test Generation

g

Diagnosis

Branches taken
Values assigned
Invariants violated

and more...

RoBler: “Understanding Failures Through Facts’, ESEC/FSE DS 2011

Diagnosis

0.2% of source code

Burger, Zeller: “Minimizing Failure Reproduction’; ISSTA 2011

Our idea: generate test cases to narrow
down the diagnosis...

... in terms of features that are relevant,
real, and demonstrated by real test
cases, just as shown before.

This is our current achievement.
Debugging (almost) solved.

executions

Generate test cases Assess executions
to systematically to learn about
explore behavior software behavior

specifications

Search-based analysis

Today's Keynote:
Search-Based Program Analysis

Restrict to real usage

Enriching specifications

o) e
- =5) feass
L 4

Execute and extract Generate test mutants
initial spec and enrich specs

Dalimeter et at “Gererating Test Cases for Spechication Mring” SSTA 2010

Explore complete behavior

HUTest

* generates test cases with oracles

 retains assertions that find most mutants

Frasec Zefer "WAstation hven Generstion of Usik Tests and Oracies” S5TA 2010

Identify relevant behavior

The more we can cover behavior, the
more we learn about the system — and
this gives us great opportunities to
finally deal with obscure, complex
systems. And this is not only what we
should do — this is something we must
do. Thank you!

